Experiments in Fluid Mechanics 2015

Title of presentation:

Shake-the-Box: Lagrangian particle tracking at unprecedented tracer particle density **Authors:** Joachim Deppe, Dirk Michaelis

Organisation(s): LaVision GmbH, Germany, Goettingen

Email(s): jdeppe@lavision.de

Abstract:

4D-PTV, as a time-resolved volumetric flow measurement technique, has recently regained a whole new level of attention by the introduction of the award winning* "Shake-the-Box" method [1]. Traditionally PTV has suffered from a poor spatial resolution due to its limitation of measuring flows with a low particle seeding density. Utilizing the temporal information in addition to iterative particle reconstruction [2], now "Shake-the-Box" allows Lagrangian particle tracking at **unprecedented tracer particle density and positional accuracy** [1]. It is applicable at seeding densities as high as - *or even higher than* - the most sophisticated volumetric flow measurement systems so far (e.g. Tomographic PIV).

Extracting individual Lagrangian particle tracks at high seeding densities is offering **unique advantages** compared to traditional measurements on an Eulerian measurement grid:

- The spatial resolution for average fields and Reynolds stresses is not limited to the PIV grid resolution anymore. Using a large number of snapshots, the **spatial resolution can be increased** to the pixel level or even below [3].
- Time-resolved tracking allows more **precise velocity and acceleration** estimation (see Fig. 1 below).
- Precise knowledge of the material derivative enables reliable pressure estimation.

Computation time is reduced dramatically, moving from the time and space consuming voxel representation of Tomographic PIV to individual particle tracks. Typically the computation time is **10 to 100 times less** than for Tomographic PIV.

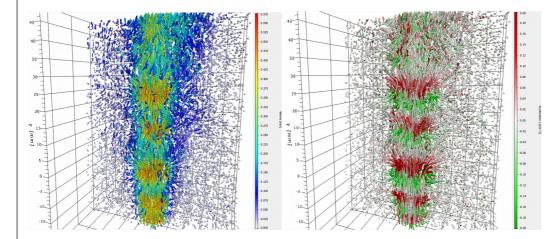


Figure 1. Shake-the-Box results for a free jet in water**: velocity (left) and acceleration (right). Recorded, calculated and displayed in LaVision's *DaVis* software

[1] Schanz et al., 'Shake The Box': A highly efficient and accurate Tomographic Particle Tracking Velocimetry (TOMO-PTV) method using prediction of particle positions, PIV 2013

[2] Wieneke, Iterative reconstruction of volumetric particle distribution, MST 2012

[3] Kähler et al., On the resolution limit of digital particle image velocimetry, ExpFluids 2012

* PIV Challenge 2014 award: D. Schanz with "Shake the Box" ** recordings courtesy D. Violato, TU Delft